If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-24t+12=0
a = 4.9; b = -24; c = +12;
Δ = b2-4ac
Δ = -242-4·4.9·12
Δ = 340.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-\sqrt{340.8}}{2*4.9}=\frac{24-\sqrt{340.8}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+\sqrt{340.8}}{2*4.9}=\frac{24+\sqrt{340.8}}{9.8} $
| F(x)=-2x^2+16x-30 | | 7(c−13)=−49 | | 26=4w-6 | | 2(3x+5)=-3(-x+7) | | (-5d+1=(-2) | | 1000=12x/12.56 | | 15-4-2+x+4=9 | | 8(2x-3)-6x=2x+6x | | 1000=12x/3.14x4 | | 32=x-27 | | d=3.14(14) | | y-20=118 | | 2w-54=2w-94=180 | | 2w+6=2(w+3) | | 2w-54=2w-94 | | 2w-94=2w-54 | | 50/4x=x+15 | | 5u-20=7u-34 | | w=2w-25 | | 9−9x=2(1−5x) | | 5p=7p-84 | | 4+3+x-2=10 | | 2z+40=7z+20 | | x=3x-54 | | z-1=4z-40 | | 9b-53=6b+38 | | 7s+41=9s-53 | | 7s+41=92-53 | | 3x+5=2x+17=2x+18 | | m/3=33; | | x=4x-87 | | 8u=4u-12 |